Rounding corners of nano-square patches for multispectral plasmonic metamaterial absorbers.
نویسندگان
چکیده
Multispectral metamaterial absorbers based on metal-insulator-metal nano-square patch resonators are studied here. For a geometry consisting of perfectly nano-square patches and vertical sidewalls, double resonances in the visible regime are observed due to simultaneous excitation of electric and magnetic plasmon modes. Although slightly modifying the sizes of the square patches makes the resonance wavelengths simply shift, rounding corners of the square patches results in emergence of a third resonance due to excitation of the circular cavity modes. Sidewall angle of the patches are also observed to affect the absorption spectra significantly. Peak absorption values for the triple resonance structures are strongly affected as the sidewall angle varies from 90 to 50 degrees. Rounded corners and slanted sidewalls are typical imperfections for lithographically fabricated metamaterial structures. The presented results suggest that imperfections caused during fabrication of the top nano-structures must be taken into account when designing metamaterial absorbers. Furthermore, it is shown that these fabrication imperfections can be exploited for improving resonance properties and bandwidths of metamaterials for various potential applications such as solar energy harvesting, thermal emitters, surface enhanced spectroscopies and photodetection.
منابع مشابه
Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies
In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...
متن کاملDesign, Fabrication and Measurement of Two-Layered Quadruple-Band Microwave Metamaterial Absorber
The design, simulation, fabrication, and measurement of two structures of metamaterial absorbers (MA) is investigated at microwave frequency in this paper. By stacking of one layer structure on the top of each other, a two-layered structure is generated. The unit cell at each layer consisting of two sets of various circular and square patches are designed so that the structure exhibit quad band...
متن کاملMultispectral plasmon induced transparency in coupled meta-atoms.
We introduce an approach enabling construction of a scalable metamaterial media supporting multispectral plasmon induced transparency. The composite multilayered media consist of coupled meta-atoms with radiant and subradiant hybridized plasmonic modes interacting through the structural asymmetry. A perturbative model incorporating hybridization and mode coupling is introduced to explain the ob...
متن کاملMetamaterial Absorbers for Infrared Detection of Molecular Self-Assembled Monolayers
The emerging field of plasmonic metamaterials has introduced new degree of freedom to manipulate optical field from nano to macroscopic scale, offering an attractive platform for sensing applications. So far, metamaterial sensor concepts, however, have focused on hot-spot engineering to improve the near-field enhancement, rather than fully exploiting tailored material properties. Here, we prese...
متن کاملUltranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
Nanostructured metals have received a significant amount of attention in recent years due to their exciting plasmonic and photonic properties enabling strong field localization, light concentration, and strong absorption and scattering at their resonance frequencies. Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of technologies inclu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 23 9 شماره
صفحات -
تاریخ انتشار 2015